
enter for
foundations of
Intelligent
ystems

625 Rhodes Hall, Ithaca, NY 14853 (607) 255-8005

REPORT DOCUMENTATION PAGE
Form Approved

OMB NO. 0704-0188

Public Reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data^sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimates or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188,) Washington, DC 20503.

1. AGENCY USE ONLY (Leave Blank) 2. REPOl ATE

4. TITLE AND SUBTITLE

Efficient Models for Data Storage with References

6. AUTHOR(S)

S. N. Artemov and V. Krupski

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSES)

Regents of the University of California
c/o Sponsored Projects Office
336 Sproul Hall
Berkeley, CA 94720-5940
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESSES)

U. S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211

3. REPORT TYPE AND DATES COVERED

Technical Report

5. FUNDING NUMBERS

DAAH04-98-1-0341

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ftfLo 3<rm.7*w*A-*-M
11. SUPPLEMENTARY NOTES ,,,,,,, , ^_j «- ■ i

The views, opinions and/or findings contained in this report are those of the authors) and should not be construed as an oflicial
Department of the Army position, policy or decision, unless so designated by the documentation.

12 a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

12 b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words) .
We introduce reference structures—a basic mathematical model of a data organization capable to
store and utilize information about its addresses. A propositional labelled modal language is used as a
specification and programming language for reference structures; the satisfiability algorithm for modal
language gives a method of building and optimizing reference structures satisfying a given formula.
Corresponding labelled modal logics are presented, supplied with cut free axiomatizations,
completeness and decidability theorems are proved. Initialization of typed variables in some
programming languages is presented as an example of a reference structure building.

14. SUBJECT TERMS
reference structures, modal language, optimization

17. SECURITY CLASSIFICATION
OR REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
ON THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

18

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500

feie §ÜAL!TT Ifc*n*3CTCE» £

Standard Form 298 (Rev.2-89)
Prescribed by ANSI Std. 239-18
298-102

Technical Report
97-04

Efficient Models for Data Storage
with References

S. N. ARTEMOV AND V. KRUPSKI

July 1997

W80519 W
BHOQWLH* INSPECTED ^

Efficient Models for Data Storage
with References

Sergei Artemov* Vladimir Krupski*
Center for Foundations of Department of Mathematics,

Intelligent Systems, Logic in Computer Science Laboratory,
Cornell University, Moscow State University,

Ithaca NY, 14853, U.S.A. Moscow 119899, RUSSIA
artemovQhybrid.Cornell.edu krupskiQlpcs.math.msu.ru

Abstract

In logic programming the unification process involves reading the entire term
from the beginning up to the place where the needed information is stored (cf.
[1]). It is clear that a reasonable system with the direct access to the information
might be more efficient. For example, a binary tree of data is usually presented
by a term and the standard PROLOG algorithm even when it knows the path
leading to the desired node is forced to read the term symbol by symbol in order
to understand the subtrees structure of the term. However if we'll teach this
algorithm how to utilize the information about the addresses of the immediate
successor nodes, which is in fact stored on the microlevel together with each
node, then the algorithm will read only log of the length of the term. To
provide data structures with the direct access we have to connect a PROLOG-
like language with some external system that will support the descriptions of
such structures. We consider the principles of designing such external systems
based on the ideas and methods of labelled modal logic.

We introduce reference structures - a basic mathematical model of a data
organization capable to store and utilize information about its addresses. A

'Supported by the ARO under the MURI program "Integrated Approach to Intelligent Systems",
grant no. DAA H04-96-1-0341.

^Partially supported by the grant No.95-01-00416 of the Russian Foundation for Fundamental
Research.

prepositional labelled modal language is used as a specification and program-
ming language for reference structures; the satisfiability algorithm for modal
language gives a method of building and optimizing reference structures sat-
isfying a given formula. Corresponding labelled modal logics are presented,
supplied with cut free axiomatizations, completeness and decidability theorems
are proved. Initialization of typed variables in some programming languages is
presented as an example of a reference structure building.

1 Introduction

We suggest to interpret a labelled modal formula fmJA as "memory cell m stores
sentence A" and to treat propositional variables as names of the cell contents. The
labelled modal language allows to keep control over both unification of names and
validity of the information stored.

All this eventually makes it possible to do some sort of programming of referential
data structures by means of labelled modal language in the following way.

We consider a language with

• atomic data constants ci, C2,...,

• variables mi, 1712, ■ ■ ■ for memory cell addresses,

• operation~of reading the contents of a cell, operation • for storing informa-
tion to a cell, boolean connectives.

A formula in this language may be regarded as a specification of a memory config-
uration which stores data files ci, C2,... together with an information about contents
of other cells, location of files, etc. The standard completeness and cut elimination
proof of a corresponding logic of refence structures in fact gives an algorithm which
verifies the unifiability of names and semantical correctness of this specification and
in a positive case provides a data allocation table in abstract addresses.

The compiling problem turns out to be iVP-complete. The corresponding algo-
rithm suggested in the current paper is a hybrid of the unification and some sort of
boolean satisfiability procedures.

The restriction of the underlying objects to sentences (with validity relation on
them) does not lead to a loss of generality for our purposes: if a proper data c,-
originally represents a number N, we assume that c,- is the sentence "this is a number

iV"; the same treatment may be given to other sorts of proper information: terms,
names, addresses, etc.

The general definition of a reference structure covers not only a wide class of
computer data organizations, but also cross-references with built in reference assign-
ments in formal languages, the system of proofs and theorems in a formal theory,
etc. However in the current paper we restrict this general definition to pure reference
structures closely oriented to the computer data bases. Since there will be no others
here we will use a general name reference structures for the pure ones.

2 Reference Structures

2.1 Definition. The language C(M, C) of a reference structure depends on two sets
M and C and is defined as follows. Let C = {ci, C2,..., T} be a set of data constants,
which will represent a proper information to be stored in a reference structure. Let
also M = {1,2,...} be a set of memory cells. The language of a reference structure
contains storage operators [l](-)> [2](-),..., one for each memory cell, together with
usual boolean connectives {A, V,->, T}. For any cell m G M there is a reference
variable vm, vm = m for short. One should not be mislead by the notation: 1,2...
are indeed variables, not constants, since the reading function corresponding to ~ will
itself be a parameter of a reference structure. We denote by V the set of all reference
variables. The set of formulas Fm(M, C) is the least set such that

C,V C Fm{M,C),

if m G M and A G Fm{M, C), then [m]A G Fm(M, C),

if A, Be Fm(M, C), then (A A B), (A V B), (A -»■ B), (-A) G Fm(M, C).

2.2 Definition. A formula is ground if it contains no reference variables, under
St(M, C) we mean the set of all ground formulas of the language C(M, C). A sub-
stitution is a partial mapping 6 : V —> Fm(M,C); 8 is a solution of an equation
A = B, for A,ße Fm(M,C), if A0 = B9. Substitution 9 is a solution of a relation
R C M x Fm(M, C) if 6 is a solution of m = A for every (m, A) G R. A substitution
0 : V —> St(M, C) is called ground substitution. We assume that all atom constants
are valid. Any ground solution 0 of a relation R C M x Fm{M, C) naturally defines
a validity relation \=R g on all ground formulas:

\=R8 T and |=fig c for all cG C,

\=RB lmJA & (m e Dom R and m~9 = A),

\=R0 respects boolean connectives.

A ground solution 9 of a relation R is valid on JV C M, if \=Re nO for all n 6 N. A
storage table is a functional relation R C M x Fm(M, C) between memory cells and
formulas.

2.3 Definition. A reference structure is a storage table which has a ground solution
9 valid on Dom R, i.e. a storage table with all stored sentences to be true.

2.4 Comment. The relation R is a system of assigning memory cells to formulas
from Fm(M, C) which is consistent from both combinatorial and semantical sides.
The cells which are not in Dom R are called empty. The reserve of empty cells is
both realistic and technically convenient. If R has a ground solution satisfying the
definition of a reference structure above, then R has such a solution which is total on
V. Without loss of generality we assume that 9 is already total and call it a reading
procedure of R. A reading procedure provides a ground picture of the cell contents
where all the references are already given their "real" meaning in terms of proper
information and storage connections. On empty cells a reading procedure returns
some ground sentences which may be regarded as sort of "error messages".

2.5 Definition. Let R be a reference structure and 9 - its reading procedure.
With a pair 3? = (R, 9) we associate a validity relation |= defined on all formulas from
Fm{M,C):

^M # t=R,eA9.

It is easy to see that |= is an extention of the "old" validity relation \=R g from
St{M, C) to Fm(M, C). Also, 3? \= A for all A € Val R.

2.6 Lemma.
M\=lm}A => n\=A.

Proof follows immediately from the definitions.

2.7 Lemma. The following are equivalent

1. m is nonempty,
2. 3? (= [m]S for some formula B,
3. ft |= Imjrti.

Proof. 3. =£> 2. =£■ 1. are trivial. We prove the remaining 1. 4-3. If m G Dom R,
then (m, A) G i? for some formula Am6 = AO, hence |=H e \m\A6 and 3? |= [m] A ■

We can see now how the decision to have a reserve of empty cells increases the
expressive power of the reference structures language. For example, the fact that
m G M is not empty can now be expressed by a formula [m]m, which we will denote
m and will use as a natural sentence format pointer. The meaning of m as a pointer
is assumed to be built in the search algorithm. Note that the length of m can be
easily made of the order of the length of m and ra. i.e. "very small".

2.8 Example. A list of c\, c2,..., cn may be described as the ground reference struc-
ture R over M = {1,2,... ,n + 1} and C = {ci,c2, ...,c„} as

Ä = {(l,¥>i),...,(n,<p„),(n + 1,T)}

for (pi = AiA [2]</?2, </>2 = M A [3]</?3, • • •, Vn = An A [n + 1]T. Here T works as a
marker of the end node. The list can be represented by the formula [l]vi)-

It does not mean, however that we intend to store the entire list in one cell 1. We
will see now how a regular reference structure "list" looks like:

R = {(», Ai A 2), (2, A2 A 3),..., (n, An A n +1), (n + 1, T)}.

The entire reference structure can now be represented by the formula

[l](Ax A 2)) A • • • A HP» A »T1) A ln + 1lT-

The main question here is how to decide whether there exists a reference structure
satisfying given storage description, and to construct one if it exists. A finite equation
system alone can be solved in linear time (cf.[5], [6]). The semantic component
however spoils the picture: the problem immediately becomes at least iVP-hard,
since it naturally includes the satisfiability problem for the classical propositional
logic. Below we'll show that it is iVP-complete.

3 Logic of reference structures

Usually the Unification Algorithm deals with finite systems of "unconditional" equal-
ities of the form A — B. Fast algorithms of solving such systems were suggested in
[5] (cf. also [7]). We assume that formulas are presented as directed acyclic graphes
with shared variables (dags) which allow lineartime unification ([5]).

We will also be interested in the "conditional" equalities of the form

f Ui = Vi, i€l m

1 Si = Wj =► Ui = Vi, jeJ K)

For a convenience we consider some deterministic variant of the Unification Algo-
rithm by fixing an order of the equations for this algorithm to choose. The suitable
modification U of the unification algorithm for "conditional" equalities works as fol-
lows. Using the standard unification algorithm solve the unconditional part of the
system and calculate its m.g.u. a. Then pick a "conditional" equality and check the

conditions
Sjcr = Wjcr.

If the condition fails, then take the next "conditional" equality. If the conditions are
fulfilled, add the succedent equality to the unconditional part and solve the system
again. The process terminates when the checking procedure fails to add new equalities
or the unification algorithm fails to solve a current unconditional part of the system.
The standard argument proves that this modification gives the most general unifier
(m.g.u.) of the system with "conditional" equations. The standard m.g.u. of the set
of equations (1) is the m.g.u. obtained by U.

3.1 Lemma, (cf. [3]). Let a be the standard m.g.u. of a "conditional" system (1).

Then
1. all variables occurring in cr are from (1),
2. Dom(a) n Val(a) = 0,
3. cr is idem-potent, i.e. cr o cr = cr,
4- for every solution 6 of (1) there exists a substitution r s.t. 9 = a o r.

Consider a labelled modal language L which contains

memory cell variables CVar = {mi, m2,1^3,...},

reference variables RVar = {raj, raj, rh~i ...},

sentence constants Con = {ci, C2, C3,...}, the truth constant T

and is closed under boolean connectives and labelled modalities [mt-](-),i = 1,2,...
(unary operators).

The difference between L and £(M, C) is that the cell addresses in L are variables,
unlike £(M, C), where they are constants.

3.2 Definition. Let M be a memory set and C a data constants set. An interpre-
tation of L to Fm(M, C) is a mapping * of CVar into M and Con into C which is
injective on Con. The interpretation * has a canonical extension to all L fromulas:

T* = T,

for p € RVar p * = p*,

* commutes with the boolean connectives,

(\p\A)* is [p*]A*.

We say that a L formula F is valid in a reference structure 9ft = (R, 6) under interpre-
tation *, if 9ft |= F*. A reference structure 3? is a model of a given set r of L formulas
under given interpretation * if U (= A* for each A € T.

The language L may now be regarded as a programming language for reference
structures. Here a program is a modal formula A describing the properties of a
reference structure R. Satisfiability of A means the existence of a desired reference
structure. The satisfiability algorithm for the language L naturally arises from the
completeness proof of the calculus CR. (below).

A substitution on the L formulas works simultaneously in two formats: cells and
sentences. No special restrictions on substitutions are imposed. For example, an
reference variable can be substituted by any L formula.

Without a loss of generality we restrict the set of cell variables CVar to its finite
fragment {mi,m2,... ,mr} (corresponding restriction should be put on the set of
reference variables). Also we assume that Con is finite.

3.3 Definition. Under <TA,B,P we mean the standard m.g.u. of the set of equations

P = A=J ^ (2)
m,- = m.j =£• m,- = mj.

Here the "conditional" part is standard with mi,mj range over all cell variables
occurring in "unconditional" part p = A = B. Note that O~A,B# is an idempotent and

acts on the variables of all sorts, miCTA,B,p is a cell variable and mi(TA,B,v is a formula
from L.

3.4 Definition. We define C — D (mod p = A = B) to stand for

"C<r = Da for every solution <x of (2)".

Apparently, if the system (2) has no solution, then C — D (mod p = A = B)
holds for all C and D. If the system (2) has a solution then

C = D (mod p = A = B) & CaAyByV = D<TA,B,P-

So, the relation C = D (mod p = A = B) is decidable.

Axioms of CR.:

(Al) The classical propositional axioms together with constants {ci,c2,c3,..., T}
adopted as new axioms,

(A2) \p\A -J. A,

(A3) \p]A A \p]B ^(C^D) if C = D (mod p = A = B).

Rule modus ponens.

Axiom (A3) is similar to the unification axiom from [2] and the functionality axiom
from [4].

3.5 Example. The following is provable in CR:

• -^([piMi A ... A [p„]An) if the system

pk = Ak (fc = l,...,re);

p = q => p = q for all cell variables p, q iy)
occurring in \p{\Ai A ... A \pn\An

is not unifiable.

• [pil^i A ... A [pn]^4n —y {B <r> C) if Be = C<7 for the most general unifier a
satisfying the condition (3).

4 Completeness theorem

4.1 Lemma. For any modal formula F if CR h F, then F* is valid under every
interpretation * in reference structures.

Proof. A straightforward induction on the proof of F. ■

4.2 Theorem. For any formula F 6 L if CR, \f F, then there exists a finite reference
structure 3? and interpretation * of the language L into 5R such that 5ft ^ F*.

Now we introduce a Gentzen style formulation of CR, and prove simultaneously
the completeness theorem along with the cut elimination property of the relevant
Gentzen style system.

In what follows a sequent is a formal expression of the form T Z> A, where T and
A are finite sets of L formulas.

4.3 Definition. CRG is the following sequent calculus:

Axioms:

• T D A such that T ("I A ^ 0 or T € A or c 6 A for some c G Con.

• T D A such that E C T , where E = {IpiJAi \ i — 1,2,...} and the system (3)
for E is not unifiable.

Rules:

• Classical rules for A,-" and structural rules together with the cut-rule.

• A,TD A
IPU,TD A

E,B(T,TDA E,TDB<T,A „ fri,|. - 0 , ,
• E B TD A ' ETD B A ' re " = {v>lJAi | * = 1,2,...} and o-

is the most general unifier of (3) for E and obtained as a result of the standard
unification algorithm U.

4.4 Definition. CRG is the system CRG without the cut rule.

The following lemma claims the soundness of CRG w.r.t. CR.

4.5 Lemma. If CRG h T D A, then CR h A T -> V A. *

Proof. Standard induction on the complexity of the proof of T D A in CRG- ■

4.6 Definition. Saturation process is the nondeterministic procedure constructing
a saturation tree labelled by pairs (sequent, substitution) as follows:

Given the sequent To D Ao put

T'0 = T0 U {T} U { the set of all constants, occurring in T0 D A0},

and label the root by (T'0 D A0, e), where e is an empty substitution, and
try repeatedly to apply the saturation rules while they add to the tree
some node with the label sequent different from the label of its parent.
The rules can be applied to an arbitrary leaf of the current part of the tree
if its label sequent T D A is not an axiom of CRG\ in the formulations of
the rules we suppose that such a leaf (a current node) is already chosen
and labelled by (r D A, a).

Saturation rules:

Rule 1. If A A B G T, then add to the tree a son of the current node
labelled by (r U {A, B} D A, a).

Rule 2. If A A B G A, then add to the tree two sons of the current node
labelled by (r D A U {A}, a) and (r D A U {B}, a).

Rule 3. If -<A € T (-<A € A), then add to the tree a son of the current
node labelled by (r D A U {A}, a) (correspondingly, (r U {A} D
A,*)).

Rule 4. If OpA € T, then add to the tree a son of the current node
labelled by (r U {A} D A, a).

Rule 5. Call the unification algorithm U to get the most general solution
a' of the system (3) where {|p,]A,-,i = l,...,n} is the list of all
formulas of the form |p,]A from T. Add to the tree a son of the
current node labelled by (To-' D ACT', era').

lYox Q = {AltA2,...} A n = M A ^2 A ..., and V ^ = M V A2 V

10

4.7 Lemma. If (T D A, er) is a label in a saturation tree, then for any variable v

occurring in T D A we have vcr = v.

Proof. First of all we notice that none of the variables from Dom(cr) occurs in Val(cr)
since a is a product of m.g.u.'s each enjoying the properties of lemma 3.1. Consider a
step 5. Any variable v occurring in T D A is neither from Dom(a) nor from Dom(cr').
Thus v is a fixed point of both a and &'. ■

4.8 Corollary. For any label (T D A, a) of the saturation tree any subformula A of
r^Awe have Acr = A, (hence IV = T and ACT = A).

4.9 Lemma, a2 = a.

Proof. Dom{a) n Val(cr) = 0. ■

4.10 Lemma. The saturation process terminates.

Proof. Rules 1-4 do not change the subformulas of the sequent so they can not
be applied infinitely many times. Any application of the rule 5 reduces the set of
variables occurring in T D A, thus any path in a saturation tree is finite and the tree
itself is finite. ■

Therefore the saturation process always terminates and computes some saturation
tree of a given sequent. We say that the saturation process succeeds if it produces a
saturation tree with all leafs labelled with axioms; otherwise it fails.

4.11 Lemma. If the saturation process on a given sequent succeeds, then the sequent
is provable in CJZQ.

Proof. A saturation tree with all leafs labelled by axioms is in fact the tree-like
derivation in C'JZQ of the sequent labeling the root. ■

Suppose the saturation process fails on a sequent To D Ao. Then it produces a
leaf of the saturation tree labelled by (r D A, o~) such that

• T0O- c r, AQO- c A, r n A = 0, T e r, Con c r;

• if {A A B) € T, then A € V and B e T;

11

• if (A AB) e A, then A G A or B G A;

• if ^A G T, then A G A; if->A € A, then A € T;

• if [pJA € T, then A G T;

• T is functional: [p]A G T and [p]B G Y imply A = B.

Now we are ready to define a reference structure 3? and an interpretation * which
will eventually become a countermodel for To D A0.

Let M be the set of cell variables occurring in Y0 D A0, which are fixed points of

<r, i.e.
M = {m G CVar \ ma — m}.

In particular, all cell variables occurring in Y D A are in M. Let the set of data
constants C be Con U D, where D is a set of "new constants" corresponding to fixed
point reference variables:

D = {d(m) | mcr = m}.

In particular, every reference variable m occurring in Y D A received a corresponding
constant d(m).

It is clear, that the fixed point reference variables remain sort of parameters of the
future reference structure and they can be evaluated in either way. However the rules
of the game require them to become ground sentences. The easiest way to ensure it
is to introduce special new constants to evaluate these variables.

Now the set of Fm(M, C) is defined.

Put for any fixed point reference variable m

\ -'dfa), otherwise,

Now for any subformula A of Y D A we define a ground AA G Fm(M,C): c$ = c,-,
TA = T, mA = A(m), ([ra]J5)A = [m]BA. Note that the translation A is injective
since no constants d(m) are unified for different m G M. So, we will write BX instead
of Bx understanding A as the substitution {mJ/A(mJ),m^/A(m^)...}. Put

6 = <T\,

12

and let
ß={(m,A)|[m]Aer>.

We have to establish now that ft = (R, 9) is a reference structure. First, 9 is clearly a
ground substitution. Then it is easy to see that 9 unifies R. Indeed, let (m, A) G -R,
then [ra]A G T, and, by the saturation construction ma = Aa. Thus

mo = ma\ = Acr\ = Ad.

4.12 Lemma.
ACT ^ \=R,eA6,

AGA =» fiR}9A8.

Proof. Induction on A. The cases A is a constant c,-, T as well as the case A is an
reference variable ra are covered by the definitions of T D A and 9. The cases of
boolean connectives are trivial by the construction of the saturated sequent T D A.
Now

[m]B G T => (m,B)eR => m9 = B9 =*> \=Rg [m]B0.

Let now [ra]i? € A. If ra G" Dom(R), then clearly Y=Re \rri\B9. Let now m G
Dom(R), i.e. |ra]£' G T for some B', then mö = B'O. If £0 = B'6, then 5<r = 5V,
since A is injective, and thus B = Bcr = B'a = B', which is impossible because
r n A = 0. ■

4.13 Lemma. ft = (R, 6) is a reference structure.

Proof. It only remains to check that m9 is valid on Dom(R). Let ra G Dom(R),
then (m, A9) G R9 and there exists some B such that [ra]J3 G V and B9 = A0. Then,
by the saturation property, B G T, thus, by lemma 4.12 [=ße B9, i.e. [=Re A0. ■

Now we define an interpretation * by ra* = m,<7, and thus A* = Aa for any L
formula A. Note that Acr is simultaneously a formula of the reference structure ft.

It is almost trivial now that ft ^ (A To —>■ V Ao)*- Indeed, if A G To, then Aa G T,
and ft |= Aa9, by lemma 4.12, and ft |= A*. Similarly, if A G A0, then ft ^ A*.

Thus we have established the following: for any sequent T 3 A in the language L

CRTG\/YD& =► ft^(/\r-+VA)* =► ai\//\r->\/A =► CRG\/TDA,

13

which together with the trivial

CRG \f r D A =» £^5 ^ r D A

gives

4.14 Corollary. (Cut elimination for CRQ) CRG = CRG

4.15 Corollary. CRG is an adequate Gentzen style formulation of CR.

4.16 Corollary. CR, is decidable.

Let us complete the proof of Theorem 4.2. Fix a formula F satisfying the condi-
tions of the Theorem 4.2. Put T0 = 0 and A0 = {F}. Since CRQ \f T0 D A0 the
saturation process on the sequent To D Ao fails, and there is a reference structure 5R
such that 3? ^ A To ->• V Ao, i.e. 5R ^ F. m

A lazy inspection of the completeness proof above demonstrates that the size of
a countermodel (in a dags form) of a given L formula A can be made less than c/4,
where / is the length of A, and c fixed.

Also, on the basis of lineartime unification algorithms from [5], [7] one can easily
proof the following time complexity bounds for some natural problems in reference
structures.

4.17 Theorem.

1. The problem "whether 3? = (R, 9) is a reference structure" is polytime.
2. The satisfiability problem for the language L is NP-complete.

5 Reference structures building and optimization.

The language L can now be considered as a programming language for designing
reference structures with reading procedures. A program here is a labelled modal
formula P describing the properties of some reference structure 3? . The satisfiability
algorithm extracted from the proofs of the Theorem 4.2 checks whether P is satisfiable
and constructs a finite model of P, which is a desired reference structure.

14

We reduce the problem of constructing a model of P to the problem of construct-
ing a countermodel for the sequent P D. The saturation algorithm checks whether
this sequent is provable and transforms it into the sequent F D A with saturation
properties. If saturation succeeds, then CK h ->P, and thus there is no reference
structure satisfying the condition P. If saturation fails, then we have a quadratic of
the size of P reference structure 3? and an interpretation * such that P* is valid in JR.

Let us consider an example of a problem "initialization of typed variables", which
comes from some common programming languages like PASCAL, C, etc.

5.1 Example. (Initialization of typed variables). We consider the following variant
of commonly used typing system. Let T be a finite set of primitive types with domains
DT, T G T (the domains are supposed to be decidable but not necessary disjoint).
The set of all types Type is constructed from T by the rules:

Rule : Domain :

(Union) l^L-'l" D.U...UA.

(Subset) -£——77—p—- —.—r—-= V{ai,...,an}
Setjof(ailn,...,an\rn) G Type

The initialization problem: given a type r G Type and an object a G öreType DT

we have to check whether a G DT and, if it is, to build a data structure which stores a
as an object of type r together with some address which is the value of corresponding
pointer.

The basic elements to construct a reference structure from are constants for objects
of primitive types. A reference structure is supposed to represent the type structure
in a way that provides a direct access to any subobject of a given object.

With the pair (T, a) we associate a formula <&(r, a) G L and a cell variable p in it:

(Primitive type): r G T and a G DT. Then

$(r, a) = H>]cT,a,

15

Ti G Type, 1 < i < n
{TI,...,T„} G Type

Ti G Type, 1 < i < n
{n;...;rn} eType

Ti G Type, a,- G DTi, 1 < i <n

where cT)0 is a data constant.

(Structure): r = {ri,...,rn} and a = (ai,...,an). Then

n

(r,a) = (A.-)A[p](piA...Ap„),
«=i

where $,• is a variant of $(r,-, a,-) obtained from it by renaming the variables of
the form <?, g (so $, and $j for i ^ j do not have common variables) and p,- is
the associated cell variable.

(Union): r = {TI; ...; rn}. Then

(T,a) = (V;)A[p]g,
1=1

where $,- = $t[g/Pt']5 9 is a new variable and $, is obtained from $(r,-, a) in the
same way as for (Structure).

(Subset): r = Setjof(ai\ri,..., an\rn) and a C {d,..., an}. Then

$(T, a) = (A ""A) A (A *0 A [p]("-[po]T ^> px V ... V pn),

where pa is a new cell variable and $,-, pi, (1 < i < n) are the same as for
(Structure). Here the formula [pojT indicates whether the object a is empty.

(Type mismatch): In all other cases $(T,O,) = |p]J_.

In all cases the associated cell variable is p.
It is easy to see that $(r,a) is satisfiable iff a G DT. The satisfiability algorithm

transfers it into a data structure implementing the initialization

v := a

for a variable v of type r. The interpretation p* of the associated cell variable is
an address sufficient to restore all the information about the value of v as an object
of type r. It is a natural pointer value. Specific features of the implementation are
reflected in $(r, a); it plays a role of a program for building this data structure. The
examples of resulting data structures are shown on Fig.l.

16

Structure Union

T = {TI,T2}, a = (a1,o2).

bil°i A |P2l°2 A [p](pT A ft)

p : pi A p2

Pi :
ai

ft :
«2

r = {ri;r2}

(Mai V

, ae DT1U DT2

kJa2) A Mq

p: q

<

: .

I

r = Setjof{a1 : n, a2 : r2, a3 : r3), a = {a2, a3}.

-ft A [p2]a2 A [p3]a3 A [pI(-[ft]T f+ p{ V ft V ft)

P- ^IpojT <+ pi V ft V ft

Po :
* Pi :°

P2 :
«2

P3 :
Ö3

r = Set-of(ax : n, a2 : r2, a3 : r3), a = 0.

-"Pi A --ft A ->#£ A [p](->[po]T <-> ft V ft V ft)

p: -"[po]T <* ft V ft V ft

Po:
T Pi D p2 : D p3 : D

Figure 1:

17

Note that we have chosen the variant of the program $(r, a) where all possible sim-
plifications are already done. This job can be left to the satisfiability algorithm too.
For example in the case of (Structure) when r = {ri,..., r„} and a = (ai,..., am)
we may take the following variant:

m

lp}(Pi A • • • A Pn) A (A *0 A [p](pi A ... A An).
1=1

It is equivalent to <$>(T,a) and the algorithm transfers it into the same data structure.

In order to construct a reference structure which uses only one cell instead of many
containing the same record, i.e. to construct a reference structure with a functional
conversion of the ground storage relation (R6)-1 or, even more, with invertible reading
procedure 0, we introduce the logics CR.\ and CR.\-i. The logic CR\ is CR + (A4)
where (A4) is the following axiom scheme:

(A4) \p]A A \p'\A -+(£?<-> B\p'/p\).

CHi-i is the modification of CK where the "conditional" equality

is replaced by
p = q & p = q.

5.2 Theorem. For any labelled modal formula F

1. CR.\ h F iff F* is valid for all interpretations * in finite reference structures
with functional relation (R6)~l;

2. CR-x-x V A iff A* is valid for all interpretations * in finite reference structures
with invertible reading procedure 0.

Proof. Similar to the proof of the completeness Theorem 4.2. ■

The logics CTZi and CTZi-x are also decidable. The satisfiability algorithms from
the completeness proofs for these logics can be used in the same way as that for CJl
to construct reference structures without double stored sentences. The complexity
bounds from Theorem 4.17 are also preserved.

18

References

[1] L.Sterling and E Shapiro "The Art of PROLOG", MIT-Press, 1986.

[2] S. Artemov and T. Strassen. Functionality in the Basic Logic of Proofs. Technical
report IAM 93-004, Universität Bern, January, 1993.

[3] J.-L.Lasser, M.J.Mäher and K.Marriot. Unification revisited. In: "Foundations of
Deductive Databases and Logic Programming" J.Minker (Ed.), Morgan Kauff-
man, pp.587-626, 1987.

[4] S. Artemov. Logic of proofs. Annals of Pure and Applied Logic, v.67, No. 1, pp.
29-59, 1994.

[5] M.S.Paterson , M.N.Wegman. Linear unification. J.Comput.Syst.Sci. 16, 2, 158-
167, 1978

[6] A.Martelli, U.Montanary. An efficient unification algorithm. A CM Transactions
on Programming Languages and Systems 4, 258-282, 1982.

[7] F.Baader and J.H.Siekmann. Unification Theory. In: "Handbook of Logic in
Artificial Intelligence and Logic Programming" D.M.Gabbay, C.J.Hogger, and
J.A.Robinson (Ed.), Oxford University Press, 1994.

19

